

FIREGROUND HYDRAULICS 2022

Captain James Laing Driver Training Officer (619) 980-9962

OBJECTIVES

- Introduce the basics of fire ground Hydraulics to all participants.
- Ensure proper pump pressure and GPM delivery to hose lines on the fire ground.
- Prepare the student for the Driver Operator (DO) Hydraulics Exam.

INTRODUCTION

- There will be a timed (20 minute), 10 question Final Hydraulics Exam
- The passing score is 80%.
- Each participant must pass this exam in order to continue to Session IV.
- You will have two opportunities to pass the exam.

REFERENCES

- IFSTA Pumping Apparatus Driver/Operator Handbook -Second Edition.
- SDFD Drill Manual, Chapter 13
- Ervens Fire Fighting Apparatus and Procedures <u>Third Edition</u>

These are the basic concepts that you need to understand.

DETERMINE PUMP PRESSURE

Pump pressure is the amount of pressure in pounds per square inch (PSI) indicated on the pressure gauge or any discharge gauge.

In fire ground hydraulics, the basic pump pressure formula for a level lay is:

Pump Pressure = Nozzle Pressure + Total Friction Loss

This equation is : **PP = NP + TFL**

FACTS NECESSARY TO DETERMINE PUMP PRESSURE

- NOZZLE PRESSURE
- GPM FLOWING (or SIZE OF THE NOZZLE)
- SIZE OF HOSE
- LENGTH OF HOSE IN LAY
- ELEVATION DIFFERENTIAL
- APPLIANCE LOSS
- SPRINKLER (or STANDPIPE) SYSTEM LOSS
- LADDER SYSTEM LOSS

DETERMINE PUMP PRESSURE

PUMP PRESSURE = NOZZLE PRESSURE + TOTAL FRICTION LOSS

PP = NP + TFL

POTENTIAL NOZZLE PRESSURES

FOG NOZZLE S.O.F. - HANDLINES FOG NOZZLE S.O.F. - MASTER STREAMS ELKHART PHANTOM HIGH RISE NOZZLE SMOOTH BORE TIPS – HANDLINES SMOOTH BORE TIPS – MASTER STREAMS SPINKLER HEAD

FOG NOZZLE S.O.F. – HANDLINES

FOG NOZZLE – MASTER STREAMS

100 P.S.I. Or 80 P.S.I

ELKHART PHANTOM HIGH RISE NOZZLE

SMOOTH BORE TIPS – HANDLINES

SMOOTH BORE TIPS – MASTER STREAMS

SPRINKLER HEAD

DETERMINE PUMP PRESSURE

PP = NP + TFL

TOTAL FRICTION LOSS $TFL = FLR \times L$

TOTAL FRICTION LOSS

TOTAL FRICTION LOSS = FRICTION LOSS RATE × LENGTH

$TFL = FLR \times L$

DETERMINE FRICTION LOSS RATE

$FLR = 2Q^2$

BASED ON 2 1/2" HOSE

DETERMINE FRICTION LOSS RATE

Q = QUANTITY

Q = <u>GPM</u> 100

DETERMINE FRICTION LOSS RATE

QUANTITY - EXAMPLE $- 2Q^2$ 250 G.P.M. S.O.F. FOG NOZZLE $Q = \underline{GPM}$ $Q = \underline{250}$ Q = 2.5100 100 $2Q^2$ (2)2.5² 2.5 X 2.5 = 6.25 2 X 6.25 = 12.5 FLR = 13

DETERMINE LENGTH

TFL = FLR X LL = <u>TOTAL LENGTH</u>100LENGTH (100') INCREMENTS100' = 150' = .5

DETERMINE LENGTH

EXAMPLE

150' OF 2 ½" HOSE L= <u>150</u> 100

L = 1.5

DETERMINE TOTAL FRICTION LOSS

$\mathsf{TFL}=\mathbf{20}$

DETERMINE PUMP PRESSURE

PP = NP + TFL

250 G.P.M. S.O.F. FOG NOZZLE - HANDLINE 150' 2 $\frac{1}{2}$ " HOSE NP = 100 TFL = FLR X L TFL = 13 X 1.5 TFL =19.5 (round to closest) TFL = 20 PP = 100 + 20 **PP = 120 P.S.I.**

$2Q^2$ based on flow through 2 $\frac{1}{2}$ " hose

ALL FLOW RATES THROUGH VARIOUS SIZE HOSES MUST BE CONVERTED TO AN EQUIVALENT FLOW (EF) AS IF IT WERE FLOWING THROUGH 2 1/2" HOSE

EQUIVALENT FLOWS (EF)

AFTER THE EQUIVALENT FLOW IS COMPUTED, IT IS TREATED AS 2 1/2" HOSE. THIS FLOW IS ROUNDED OFF AS 2 1/2" HOSE TO THE NEAREST 10 GPM.

TO CALCULATE FRICTION LOSS THROUGH HOSE LARGER AND SMALLER THAN 2 1/2" HOSE EACH SIZE HOSE HAS A CORRESPONDING CONVERSION FACTOR (CF)

HOSE SIZE	CONVERSION FACTOR
3⁄4"	25
1"	9
1 1⁄2"	3.6
1 3⁄4"	2
3"	.67
3 1⁄2"	.4
4"	.25

EXAMPLE: 1 ³⁄₄" HANDLINE 150 G.P.M. S.O.F. FOG NOZZLE

1 $\frac{3}{4}$ " HOSE – CONVERSION FACTOR OF **2**

150 G.P.M. X 2 = (EF) 300 G.P.M $2Q^2 Q = 300$ 100

EXAMPLE:

1000 G.P.M. FOG NOZZLE MASTER STREAM SUPPLIED BY 4" LINE

1000 G.P.M. – 4" CONVERSION FACTOR .25

1000 X .25 = (EF) 250 GPM

 $2Q^2 \qquad Q = 250$

100

G.P.M. FLOWS

G.P.M. FLOWS

FOG NOZZLES SMOTH BORE TIPS SPRINKLER HEADS

GPM FLOWS FOR FOG NOZZLES

Handheld Fog Nozzles: GPM FLOWS ARE ADJUSTABLE AND FOUND LABELED ON THE NOZZLE.

GPM FLOWS FOR FOG NOZZLES

Master Stream Fog Nozzles:

Are not adjustable they are Automatic with GPM Labeled on the nozzle

GPM FLOWS FOR FOG NOZZLES

When pumping to a hose line used for an INTERIOR ATTACK and the GPM setting is not known, you should consider 150 GPM as your maximum GPM flow.

When pumping to a hose line used for an EXTERIOR ATTACK and the GPM is not known, you should consider 200 GPM as your maximum GPM flow.

When the GPM settings and the use of the attack line are BOTH UNKNOWN, you should pump to the HIGHEST GPM setting for that nozzle.

G.P.M. FLOWS

SPRINKLER HEAD

30 G.P.M.

GPM SMOOTH BORE TIP

SMOOTH BORE TIP FORMULA

$GPM = 30 d^2 \sqrt{NP}$

GPM FLOWS FOR SMOOTH BORE

d = DIAMETER NP = NOZZLE PRESSURE ONLY TWO SQUARE ROOTS ARE USED $\sqrt{50}$ PSI (HANDLINE SMOOTH TIP) = 7 $\sqrt{80}$ PSI (MONITOR/MASTER STREAM) = 9
GPM FLOWS FOR SMOOTH BORE

1 1/4" TIP @ 50 PSI = 330 GPM 1 1/4" TIP @ 80 PSI = 400 GPM

GPM FLOWS FOR SMOOTH BORE TIPS

ROUND OFF ACCORDING TO THE FOLLOWING RULES:

1/4" TO 3/8" TIPS - NEAREST 1 GPM 1/2" TO 1 1/4" TIPS - NEAREST 10 GPM 1 3/8" TO 2" TIPS - NEAREST 100 GPM

GPM FLOWS FOR SMOOTH BORE

EXAMPLE: 3/8" SMOOTH BORE TIP $GPM = 30 d^2 \sqrt{NP}$ $GPM = (30) \ 3/8^2 \ (7)$ GPM = (30) .375 X.375 (7)GPM = (30) .1406 (7)GPM = 4.218(7)GPM = 29.52**ROUNDED 29.52 = 30**

GPM FLOWS FOR SMOOTH BORE

EXAMPLE: 1 1/8" SMOOTH BORE TIP HANDLINE $GPM = 30 d^2 \sqrt{NP}$ $GPM = (30) 1.125 \times 1.125 (7)$ GPM = (30) 1.266 (7)GPM = 37.98(7)GPM = 265.86(ROUNDED TO NEAREST 10 GPM) = 270 GPM

GPM FLOWS FOR SMOOTH BORE TIPS

EXAMPLE 1 ¹/₂" SMOOTH BORE TIP LADDER PIPE $GPM = 30 d^2 \sqrt{NP}$ $GPM = (30) 1.5 \times 1.5 (9)$ GPM = (30) 2.25 (9)GPM = 67.5(9)GPM = 607.5607.5 (ROUNDED TO NEAREST 100 GPM) = 600**GPM**

MAXIMUM PUMP PRESSURES

BOOSTER LINE - 400 PSI

SINGLE JACKET (Wildland) - 300 PSI

DOUBLE JACKET (Attack Line) - 300 PSI

DOUBLE JACKET (High Pressure) - 600 PSI

HARD SUCTION - 150 PSI

ELEVATION DIFFERENTIAL BETWEEN PUMP AND NOZZLE

WATER WEIGHS 8.35 POUNDS PER GALLON

A COLUMN OF WATER THAT IS ONE FOOT **HIGH BY ONE SQUARE INCH WEIGHS .434** POUNDS.

FOR FIRE GROUND HYDRAULICS, THIS WEIGHT HAS BEEN ROUNDED OFF TO .5 POUNDS.

ELEVATION DIFFERENTIAL BETWEEN

WHEN CALCULATING GRAVITY LOSS IN A HIGH-RISE BUILDING, CALCULATE 5 POUNDS PER FLOOR.

REMEMBER

 $\begin{array}{l} \textbf{GRAVITY LOSS (GL) = ADD PRESSURe} \\ \textbf{GRAVITY GAIN (GG) = SUBTRACT PRESSURe} \end{array} \\ \end{array}$

ELEVATION DIFFERENTIAL BETWEEN

EXAMPLE:

250 G.P.M. S.O.F. FOG NOZZLE – HANDLINE 150' 2 $\frac{1}{2}$ " HOSE **PP = 120 P.S.I.** 250 G.P.M. S.O.F. FOG NOZZLE – HANDLINE 150' 2 $\frac{1}{2}$ " HOSE 3RD FLOOR 5 POUNDS PER FLOOR **PP = 130 P.S.I.**

INITIAL PUMP PRESSURE

OFTEN, AN ENGINEER WILL GET THE REQUEST FOR WATER BEFORE ACCURATE HYDRAULIC CALCULATIONS CAN BE MADE. IN THIS SITUATION, THE STANDARD OPERATING PROCEDURE IS TO PUMP THE PRESSURES GIVEN BELOW FOR THE FOLLOWING CASES:

INITIAL PUMP PRESSURE

HAND LINES: NOZZLE PRESSURE + GL or - GG

ELEVATED STREAMS 150 P.S.I.

SPRINKLER and STANDPIPE SYSTEMS 150 P.S.I.

THE FOLLOWING EXAMPLES SHOW HOW FIREGROUND HYDRAULICS IS EXPRESSED IN WRITTEN HYDRAULICS

250 GPM S.O.F. NOZZLE, 150' 2 ½' HOSE

PP = ?

150' 2 ½' HOSE

INITIAL PUMP PRESSURE = 100 P.S.I.

HYDRAULICS FORMULA FOR A LEVEL LAY

$$PP = NP + TFL$$
$$TFL = FLR X L$$
$$FLR = 2Q^{2}$$
$$Q = \underline{GPM}$$
$$100$$

STEP ONE: DETERMINE NOZZLE PRESSURE NP=100

STEP TWO: DETERMINE GPM FLOW

250 GPM

STEP THREE: CALCULATE THE FRICTION LOSS RATE (FLR)

 $FLR = 2Q^2$ $FLR = 2(250)^2$ 100 $FLR = 2(2.5)^2$ $FLR = 2(2.5 \times 2.5)$ FLR = 2(6.25)FLR = 12.5**FLR =13**

RULE OF TWELVE

FOR 2 ½" FLOWS BETWEEN 180 AND 320 SUBTRACT 12 FROM THE FIRST TWO NUMBERS

250 GPM

<u>25</u>0 – 12 = 13

STEP FIVE: CALCULATE TOTAL FRICTION LOSS (TFL) TFL = FLR X L TFL = 13 X 1.5 TFL = 19.5 ROUND UP TFL = 20

STEP SIX: DETERMINE PUMP PRESSURE **ADD NOZZLE PRESSURE (NP) AND TOTAL FRICTION LOSS (TFL)** PP = NP + TFLPP = 100 + 20PP = 120 P.S.I.

SMOOTH BORE TIP: PP = NP + TFL

INITIAL PUMP PRESSURE = 50 P.S.I.

STEP ONE: DETERMINE NOZZLE PRESSURE

NP= 50

1" SMOOTH **BORE TIP**

INITIAL PUMP PRESSURE = 50 P.S.I.

STEP TWO: DETERMINE GPM FLOW GPM = $30 d^2 \sqrt{NP}$

GPM = $30 d^2 \sqrt{NP}$ 1" SMOOTH BORE TIP $30 (1)^2 \sqrt{50}$ 30 X 1 X 7GPM = 210

STEP THREE: CALCULATE THE FRICTION LOSS RATE (FLR)

$FLR = 2Q^2$

$FLR = 2Q^2$
$FLR = 2(210)^2$ 100
$FLR = 2(2.1)^2$
$FLR = 2(2.1 \times 2.1)$
FLR = 2(4.41)
FLR = 8.82
FLR = 9

RULE OF TWELVE

FOR 2 1/2" FLOWS BETWEEN 180 AND 320 SUBTRACT 12 FROM THE FIRST TWO NUMBERS

210 GPM

 $\underline{210} - 12 = 9$

INITIAL PUMP PRESSURE = 50 P.S.I.

STEP FIVE: CALCULATE TOTAL FRICTION LOSS (TFL) TFL = FLR X L TFL = 9 X 2 **TFL = 18**

STEP SIX: DETERMINE PUMP PRESSURE **ADD NOZZLE PRESSURE (NP) AND TOTAL FRICTION LOSS (TFL)** PP = NP + TFLPP = 50 + 18PP = 68 P.S.I.

Step one: Determine Flow = 125 GPM EF = Conversion Factor x GPM CF for 1 $\frac{3}{4}$ " hose = 2 EF = 2 x 125 EF = 250

125 GPM S.O.F. NOZZLE

Step Two: $FLR=2Q^2$ FLR=2 (gpm)² 100 $FLR=2(250)^2 = 2.5$ 100 FLR=2 (2.5)² $FLR = 2 \times 6.25 = 12.5$ Round off to 13 PSI 200' of 1 3/4" Hose

125 GPM S.O.F. NOZZLE

Step Three: L = <u>Total Feet</u> 100 L = <u>200</u> 100 L = 2

200' of 1 3/4" Hose

Step Four: TFL = FLR X L TFL = 13 X 2 TFL = 26 PSI

PP = *NP* + *TFL PP* = 100 + 26 *PP* = 126 *PSI*

MULTIPLE LINES

PUMP TO THE HIGHEST LINE AND GATE DOWN THE SECOND

MULTIPLE LINES

- $\frac{\text{LINE (A)}}{\text{PP} = \text{NP} = \text{TFL}}$ NP = 100
- INITIAL PP = 100

 $\frac{\text{LINE (B)}}{\text{PP} = \text{NP} = \text{TFL}}$ NP = 100INITIAL PP = 100

STEP TWO: 1 3⁄4" HOSE REQUIRES CONVERSION TO DETERMINE EQUIVILANT FLOW (EF)

EF = 400

- 200 X 2 = 400
- 1 ³⁄₄" CF = 2

FLOW = 200 GPM

(EF) = CONVERSIONFACTOR X GPM

MULTIPLE LINES

<u>LINE (A)</u>

LINE (B)

- (EF) = CONVERSIONFACTOR X GPM FLOW = 150 GPM
- 1 3/32 150 0
- 1 ³⁄₄" CF = 2
- 150 X 2 = 300
- $\mathsf{EF}=\mathbf{300}$

STEP THREE: DETERMINE FRICTION LOSS RATE (FLR)

LINE (A)	<u>LINE (B)</u>
$FLR = 2Q^2$	$FLR = 2Q^2$
$FLR = 2(400)^2$ 100	$FLR = 2(300)^2$ 100
$FLR = 2(4)^2$	$FLR = 2(3)^2$
$FLR = 2(4 \times 4)$	$FLR = 2(3 \times 3)$
FLR = 2(16)	FLR = 2(9)
FLR = 32	FLR = 18

STEP FOUR:

DETERMINE LENGTH L = TOTAL FEET100

DETERMINE LENGTHDETERMINE LENGTHLINE (A)LINE (B)

L = 200100 L = 150100

L = 2 L = 1.5

STEP FIVE:

CALCULATE TOTAL FRICTION LOSS (TFL)

TOTAL FRICTION LOSS LINE (A) TFL = FLR X L

TOTAL FRICTION LOSS LINE (B) TFL = FLR X L $TFL = 18 \times 1.5$ TFL = 27

TFL = 32 X 2

 $\mathsf{TFL}=\mathbf{64}$

STEP SIX: DETERMINE PUMP PRESSURE

ADD NOZZLE PRESSURE (NP) AND TOTAL FRICTION LOSS (TFL)

DETERMINE PUMP PRESSURE <u>LINE (A)</u>

PP = NP + TFL

PP = 100 + 64

PP = 164

<u>PUMP LINE (A) AT 164</u> <u>P.S.I.</u> DETERMINE PUMP PRESSURE LINE (B)

PP = NP + TFL

PP = 100 + 27

PP = 127

<u>GATE DOWN LINE (B)</u> <u>TO 127 P.S.I.</u>

EXAMPLE:

(2) 250 GPM S.O.F. NOZZLES, (2) 2 ¹/₂" HOSE LINES EACH 100' LONG, WYED FROM (1) 2 ¹/₂" HOSE 200' LONG.

STEP ONE: DETERMINE NOZZLE PRESSURE NP = 100 P.S.I.

STEP TWO: DETERMINE FLOW TO DETERMINE FLOW IN SUPPLY LINE COMBINE NOZZLE FLOWS FLOW THROUGH LINE (A) = 500 FLOW THROUGH ONE WYED LINE = 250

STEP THREE: DETERMINE FRICTION LOSS RATE (FLR)

 $FLR = 2Q^2$

LINE (A)	LINE (B)
$FLR = 2Q^2$	$FLR = 2Q^2$
$FLR = 2(500)^2$	$FLR = 2(250)^{2}$
100	

- FLR = $2(5 \times 5)$ FLR = $2(2.5 \times 2.5)$
- FLR = 2(25) FLR = 2(6.25)
- FLR = 50 FLR = 13

STEP FIVE: DETERMINE TOTAL FRICTION LOSS (TFL)

TFL = FLR (A) X L (A) + FLR (B) X L (B)

TFL = FLR (A) X L (A) +FLR (B) X L (B)

LINE (A) LINE (B) FLR 50 X 2 FLR 13 X 1 50 X 2 13 X 1 100 13 TFL = 100 + 13TFL = 113

STEP SIX: DETERMINE PUMP PRESSURE PP = NP + TFLPP = 100 + 113**PP = 213**

WYED LINES

	CALCULATION POSSIBLITIES:
Livit	EQUAL LENGTH AND FLOW
	EQUAL LENGTH DIFFERENT GPM FLOW
~	DIFFERENT LENGTH EQUAL GPM FLOW
	DIFFERENT LENGTH AND FLOW
	ELEVATION CHANGES BETWEEN LINES
×	DIFFERENT HOSE SIZES

FOR EQUAL LENGTH DIVIDE FLOW AND CALCULATE FOR ONE LINE

EXAMPLE: 1 1/8" TIP, 50 P.S.I., (2) 200' LINES OF 2 ½", INTO (1) 100" LINE OF 2 ½"

PP = ?

PP = NP + TFL STEP ONE: DETERMINE NOZZLE PRESSURE 50 P.S.I.

STEP TWO: DETERMINE GPM FLOW

$GPM = 30 d^2 \sqrt{NP}$

$GPM = 30 d^2 \sqrt{NP}$ 1 1/8" TIP @ 50 P.S.I. 30 (1.125)² X 7 30 (1.27) X 7 38.1 X 7 = 266.70 ROUNDED 270 GPM

FOR EQUAL LENGTH DIVIDE FLOW AND CALCULATE FOR ONE LINE

GPM <u>270</u> = 135 2

135 ROUNDED TO NEAREST 10 = 140 LINE (A) GPM = 140

STEP THREE : CALCULATE FRICTION LOSS RATE (FLR)

<u>LINE (A)</u>	<u>LINE (B)</u>
140 GPM	270 GPM
$FLR = 2Q^2$	$FLR = 2Q^2$
2 (<u>140</u>) ² 100	2(<u>270</u>) ² 100
2 (1.4) ²	2(2.7) ²
2(1.96) = 3.92	2(7.29) = 14.58
FLR = 4	FIR = 15

STEP	FOUR:	
DETERMI	NE LENGTH	
L = LENGTH		
LINE (A)	LINE (B)	
200"	100"	
L = <u>200</u>	L = <u>100</u>	
100	100	
LINE (A) $L = 2$	LINE (B) $L = 1$	

STEP FIVE: DETERMINE TOTAL FRICTION LOSS

TFL = FLR (A) X L (A) + FLR (B) X L (B)

LINE (B) LINE (A) TFL = FLR X LTFL = FLR X LFLR = 15FLR = 4L = 2L = 1TFL = 4 X 2TFL = 15 X 1TFL = 8TFL = 15TFL = FLR(A) X L(A) + FLR(B) X L(B)TFL = 8 + 15TFL = 23

SIAMESE LINES (EQUAL LENGTH)

AVERAGE THE LENGTHS AND CALCULATE FLOW

EXAMPLE:

250 GPM S.O.F. NOZZLE CONNECTED TO 100 OF 2¹/₂" HOSE AND TWO SIAMESE LINES. SIAMESE LINE(A) 250" OF 2 ¹/₂" HOSE SIAMESE LINE (B) 350" OF 2 ¹/₂" HOSE

PP = NP + TFL

STEP ONE: DETERMINE NOZZLE PRESSURE **NP = 100 P.S.I.**

STEP TWO: DETERMINE GPM FLOW LINE(C) GPM = 250 FLOW THROUGH ONE SIAMESE LINE

 TOTAL FLOW
 250
 LINE(AB) FLOW = 125 GPM

 2
 2

ROUNDED GPM FLOW THROUGH ONE SIAMESE LINE = 130 GPM

STEP THREE: DETERMINE FRICTION LOSS RATE (FLR)

$FLR = 2Q^2$

<u>SIAMESE LINE (AB)</u>	<u>LINE (C)</u>
$FLR = 2Q^2$	$FLR = 2Q^2$
$FLR = 2(\underline{130})^2 \\ 100$	$FLR = 2(250)^2$ 100
$FLR = 2(1.3)^2$	$FLR = 2(2.5)^2$
$FLR = 2(1.3 \times 1.3)$	FLR = 2(6.25)
FLR = 2(1.69)	FLR = 12.5
FLR = 3.38	FLR = 13

FLR = 3

STEP FOUR: DETERMINE AVERAGE LENGTH OF SIAMESE LINES

WHEN AVERAGE COMES TO A 1/4 OR 3/4 ROUND OFF TO 1/2 OR 1 RESPECTIVELY

AVERAGE LENGTH OF SIAMESE LINES: L(A) + L(B)2 LENGTH 250 + 350 = 600600 2 AVERAGE LENGTH = 300 L = 3

STEP FIVE:

DETERMINE TOTAL FRICTION LOSS (TFL)

$TFL = FLR(AB) \times L(AB) + FLR(C) \times L(C)$

LINE (AB) FLR(AB) X L(AB)	LINE (C)
	FLR(C) X L(C)
3 X 3	13 X 1
9	13

TFL = FLR(AB) X L(AB) + FLR(C) X L(C) TFL = 9 + 13TFL = 22

STEP SIX: DETERMINE PUMP PRESSURE PP = NP + TFLPP = 100 + 22**PP = 122**

- NOZZLE PRESSURE
- GPM FLOWING (or SIZE OF THE NOZZLE)
- SIZE OF HOSE
- LENGTH OF HOSE IN LAY
- ELEVATION DIFFERENTIAL
- APPLIANCE LOSS
- SPRINKLER (or STANDPIPE) SYSTEM LOSS
- LADDER SYSTEM LOSS

APPLIANCE LOSS:

ALLOW <u>15 P.S.I.</u> APPLIANCE LOSS WHEN USING A DELUGE SET OR MONITOR

LADDER SYSTEM LOSS:

ALLOW 25 P.S.I. FOR LADDER SYSTEM LOSS (LSL)

PRE-PLUMBED TRUCKS ONLY

NOT PRE-PLUMBED IS AN APPLIANCE

ALLOW 15 PSI APPLIANCE LOSS WHEN USING A DELUGE SET OR APPLIANCE NOZZLE

DISCHARGE IS DIRECTLY OFF THE PUMP.

NO HOSE FRICTION LOSS CALCULATIONS NEED TO BE MADE

EXAMPLE: 1 ¾" TIP FROM APPARATUS MOUNTED DECK GUN

EXAMPLE: 1 ³/₄" TIP FROM APPARTUS MOUNTED DECK GUN

INTIAL PUMP PRESSURE: 80 PSI

PP = NP + AL $NP = 80 \quad AL = 15$

The End